Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
ACS Sens ; 5(12): 4017-4026, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: covidwho-997797

RESUMO

Viruses have been a continuous threat to human beings. The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a pandemic that is still ongoing worldwide. Previous pandemic influenza A virus (pH1N1) might be re-emerging through a drug-resistant mutation. We report a colorimetric viral detection method based on the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 endonuclease dead (dCas9) system. In this method, RNA in the viral lysate was directly recognized by the CRISPR/dCas9 system with biotin-protospacer adjacent motif (PAM)-presenting oligonucleotide (PAMmer). Streptavidin-horseradish peroxidase then bound to biotin-PAMmer, inducing a color change through the oxidation of 3,3',5,5'-tetramethylbenzidine. Using the developed method, we successfully identified SARS-CoV-2, pH1N1, and pH1N1/H275Y viruses by the naked eye. Moreover, the detection of viruses in human nasopharyngeal aspirates and sputum was demonstrated. Finally, clinical samples from COVID-19 patients led to a successful diagnosis. We anticipate that the current method can be employed for simple and accurate diagnosis of viruses.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Colorimetria , Farmacorresistência Viral/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Humanos , SARS-CoV-2/efeitos dos fármacos
2.
ACS Nano ; 14(12): 17241-17253, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: covidwho-939428

RESUMO

Antimicrobial resistance and multidrug resistance are slower-moving pandemics than the fast-spreading coronavirus disease 2019; however, they have potential to cause a much greater threat to global health. Here, we report a clustered regularly interspaced short palindromic repeats (CRISPR)-mediated surface-enhanced Raman scattering (SERS) assay for multidrug-resistant (MDR) bacteria. This assay was developed via a synergistic combination of the specific gene-recognition ability of the CRISPR system, superb sensitivity of SERS, and simple separation property of magnetic nanoparticles. This assay detects three multidrug-resistant (MDR) bacteria, species Staphylococcus aureus, Acinetobacter baumannii, and Klebsiella pneumoniae, without purification or gene amplification steps. Furthermore, MDR A. baumannii-infected mice were successfully diagnosed using the assay. Finally, we demonstrate the on-site capture and detection of MDR bacteria through a combination of the three-dimensional nanopillar array swab and CRISPR-mediated SERS assay. This method may prove effective for the accurate diagnosis of MDR bacterial pathogens, thus preventing severe infection by ensuring appropriate antibiotic treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA